首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolution of soil carbon stocks under Miscanthus  ×  giganteus and Miscanthus sinensis across contrasting environmental conditions
Authors:Malick S Ouattara  Anabelle Laurent  Fabien Ferchaud  Magali Berthou  Elsa Borujerdi  Arnaud Butier  Pierre Malvoisin  Dominique Romelot  Chantal Loyce
Abstract:Miscanthus is a C4 bioenergy perennial crop characterized by its high potential yield. Our study aimed to compare the carbon storage capacities of Miscanthus sinensis (M. sinensis) with that of Miscanthus × giganteus (M. × giganteus) in field conditions in different types of soils in France. We set up a multi‐environment experimental network. On each trial, we tested two treatments: M. × giganteus established from rhizomes (Gr) and M. sinensis transplanted seedlings (Sp). We quantified the soil organic carbon (SOC) stock at equivalent soil mass for both genotypes in 2014 and 2019 and for two sampling depths: L1 (ca. 0–5 cm) and L1‐2 (ca. 0–30 cm). We also calculated the total and annual variation of the SOC stock and investigated factors that could explain the variation and the initial state of the SOC stock. ANOVAs were performed to compare the SOC stock, as well as the SOC stock variation rates across treatments and soil layers. Results showed that the soil bulk density did not vary significantly between 2014 and 2019 for both treatments (Gr and Sp). The SOC concentration (i.e. SOC expressed in g/kg) increased significantly between 2014 and 2019 in L1, whereas no significant evolution was found in L2 (ca. 5–30 cm). The SOC stock (i.e. SOC expressed in t/ha) increased significantly in the superficial layer L1 for M. × giganteus and M. sinensis, by 0.48 ± 0.41 and 0.54 ± 0.25 t ha?1 year?1 on average, respectively, although no significant change was detected in the layer L1‐2 for both genotypes. Moreover, SOC stocks in 2019 did not differ significantly between M. × giganteus and M. sinensis in the soil layers L1 and L1‐2. Lastly, our results showed that the initial SOC stock was significantly higher when miscanthus was grown after set‐aside than after annual crops.
Keywords:carbon storage  miscanthus  multi‐environment trial  set‐aside land  soil organic carbon
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号