首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling
Institution:1. Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China;2. College of Life Science, Zhejiang University, Hangzhou 310058, PR China;3. Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
Abstract:The simultaneous saccharification and fermentation (SSF) of cellulose by Fusarium oxysporum was investigated in the present study. It was found that F. oxysporum grow with a maximum specific growth rate of 0.023 h?1 on cellulose at aerobic conditions and that it can produce ethanol with a volumetric productivity of 0.044 g/L/h and a yield of 0.35 g/g cellulose under anaerobic conditions. The cellulase system in F. oxysporum is well balanced as no cellobiose accumulated. The profile of the phosphorylated intermediates from Pentose Phosphate Pathway (PPP), Embden–Meyerhof–Parnas Pathway (EMP) and the key intermediates of the glycolytic pathway as well as extracellular organic and amino acids were determined during the fermentation in order to investigate the potential metabolic bottlenecks of the process. The high levels of intracellular glucose-1,6-DP a metabolic downstream of phoshoglucomutase also indicates limiting activities of this enzyme and difficulty of glucose to be channelled into biosynthetic and glycolytic pathways. The presence of high levels of γ-aminobutyrate (GABA) under anaerobic conditions suggests a functional GABA bypass and possible block in the Krebs cycle.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号