首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Prostaglandin E2 activates outwardly rectifying Cl(-) channels via a cAMP-dependent pathway and reduces cell motility in rat osteoclasts
Authors:Okamoto Fujio  Kajiya Hiroshi  Fukushima Hidefumi  Jimi Eijiro  Okabe Koji
Institution:Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan 814-0193. fujipi@college.fdcnet.ac.jp
Abstract:We examined changes in electrical and morphological properties of rat osteoclasts in response to prostaglandin (PG)E2. PGE2 (>10 nM) stimulated an outwardly rectifying Cl current in a concentration-dependent manner and caused a long-lasting depolarization of cell membrane. This PGE2-induced Cl current was reversibly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), and tamoxifen. The anion permeability sequence of this current was I > Br {approx} Cl > gluconate. When outwardly rectifying Cl current was induced by hyposmotic extracellular solution, no further stimulatory effect of PGE2 was seen. Forskolin and dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) mimicked the effect of PGE2. The PGE2-induced Cl current was inhibited by pretreatment with guanosine 5'-O-2-(thiodiphosphate) (GDP{beta}S), Rp-adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS), N-(2-p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide dihydrochloride (H-89), and protein kinase A inhibitors. Even in the absence of nonosteoclastic cells, PGE2 (1 µM) reduced cell surface area and suppressed motility of osteoclasts, and these effects were abolished by Rp-cAMPS or H-89. PGE2 is known to exert its effects through four subtypes of PGE receptors (EP1–EP4). EP2 and EP4 agonists (ONO-AE1-259 and ONO-AE1-329, respectively), but not EP1 and EP3 agonists (ONO-DI-004 and ONO-AE-248, respectively), mimicked the electrical and morphological actions of PGE2 on osteoclasts. Our results show that PGE2 stimulates rat osteoclast Cl current by activation of a cAMP-dependent pathway through EP2 and, to a lesser degree, EP4 receptors and reduces osteoclast motility. This effect is likely to reduce bone resorption. prostanoid receptor agonists; electrophysiology; motile activity; bone resorption
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号