首页 | 本学科首页   官方微博 | 高级检索  
     


Denaturation and reassembly of chaperonin GroEL studied by solution X-ray scattering
Authors:Arai Munehito  Inobe Tomonao  Maki Kosuke  Ikura Teikichi  Kihara Hiroshi  Amemiya Yoshiyuki  Kuwajima Kunihiro
Affiliation:Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Abstract:We measured the denaturation and reassembly of Escherichia coli chaperonin GroEL using small-angle solution X-ray scattering, which is a powerful technique for studying the overall structure and assembly of a protein in solution. The results of the urea-induced unfolding transition show that GroEL partially dissociates in the presence of more than 2 M urea, cooperatively unfolds at around 3 M urea, and is in a monomeric random coil-like unfolded structure at more than 3.2 M urea. Attempted refolding of the unfolded GroEL monomer by a simple dilution procedure is not successful, leading to formation of aggregates. However, the presence of ammonium sulfate and MgADP allows the fully unfolded GroEL to refold into a structure with the same hydrodynamic dimension, within experimental error, as that of the native GroEL. Moreover, the X-ray scattering profiles of the GroEL thus refolded and the native GroEL are coincident with each other, showing that the refolded GroEL has the same structure and the molecular mass as the native GroEL. These results demonstrate that the fully unfolded GroEL monomer can refold and reassemble into the native tetradecameric structure in the presence of ammonium sulfate and MgADP without ATP hydrolysis and preexisting chaperones. Therefore, GroEL can, in principle, fold and assemble into the native structure according to the intrinsic characteristic of its polypeptide chain, although preexisting GroEL would be important when the GroEL folding takes place under in vivo conditions, in order to avoid misfolding and aggregation.
Keywords:Protein folding   GroEL   molecular chaperone   denaturation   reassembly   X-ray scattering
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号