首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Validation of DXA Body Composition Estimates in Obese Men and Women
Authors:Joseph LaForgia  James Dollman  Michael J Dale  Robert T Withers  Alison M Hill
Institution:1. School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia;2. School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia;3. ATN Centre for Metabolic Fitness and Nutritional Physiology Research Centre, University of South Australia, Adelaide, South Australia, Australia;4. Exercise Physiology Laboratory, School of Education, Flinders University, Adelaide, South Australia, Australia;5. Deceased.
Abstract:The aim of this study was to determine the accuracy of dual‐energy X‐ray absorptiometry (DXA)‐derived percentage fat estimates in obese adults by using four‐compartment (4C) values as criterion measures. Differences between methods were also investigated in relation to the influence of fat‐free mass (FFM) hydration and various anthropometric measurements. Six women and eight men (age 22–54 years, BMI 28.7–39.9 kg/m2, 4C percent body fat (%BF) 31.3–52.6%) had relative body fat (%BF) determined via DXA and a 4C method that incorporated measures of body density (BD), total body water (TBW), and bone mineral mass (BMM) via underwater weighing, deuterium dilution, and DXA, respectively. Anthropometric measurements were also undertaken: height, waist and gluteal girth, and anterior‐posterior (A‐P) chest depth. Values for both methods were significantly correlated (r2 = 0.894) and no significant difference (P = 0.57) was detected between the means (DXA = 41.1%BF, 4C = 41.5%BF). The slope and intercept for the regression line were not significantly different (P > 0.05) from 1 and 0, respectively. Although both methods were significantly correlated, intraindividual differences between the methods were sizable (4C‐DXA, range = ?3.04 to 4.01%BF) and significantly correlated with tissue thickness (chest depth) or most surrogates of tissue thickness (body mass, BMI, waist girth) but not FFM hydration and gluteal girth. DXA provided cross‐sectional %BF data for obese adults without bias. However, individual data are associated with large prediction errors (±4.2%BF). This error appears to be associated with tissue thickness indicating that the DXA device used may not be able to accurately account for beam hardening in obese cohorts.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号