Restoration of membrane incorporation of an Escherichia coli outer membrane protein (OmpA) defective in membrane insertion |
| |
Authors: | M Klose F J?hnig I Hindennach U Henning |
| |
Affiliation: | Max-Planck-Institut für Biologie, Tübingen, Federal Republic of Germany. |
| |
Abstract: | The mechanism of sorting, to the outer membrane, of the 325-residue Escherichia coli protein OmpA has been investigated. It is thought to traverse the membrane eight times in antiparallel beta-strands, forming an amphiphilic beta-barrel which encompasses residues 1 to about 170; the COOH-terminal moiety is periplasmic. A mutant, carrying the substitutions Leu164----Pro and Val166----Asp within the last beta-strand (residues 160-170), has been described which was unable to assemble in the membrane (Klose, M., MacIntyre, S., Schwarz, H., and Henning, U. (1988) J. Biol. Chem. 263, 13297-13302). Linkers were inserted between the codons for residues 164 and 165 of the mutant protein. Of 13 different genes recovered, five encoded proteins which had regained the ability to assemble in the membrane. The properties of the mutant proteins, together with a structure prediction method, indicate the following rules for the final beta-strand to be compatible with, or possibly initiate, membrane insertion: (i) it must be amphiphilic or hydrophobic while its primary structure as such is fairly unimportant, (ii) it must extend over at least 9 residues, and (iii) it must not contain a proline residue around its center. One of the genes recovered coded for OmpA up to residue 164 and then followed by 10 linker-encoded residues. This 174-residue polypeptide was assembled in the membrane but did not, in contrast to all other proteins, expose sites sensitive to trypsin at the inner face of the membrane. This behavior agrees perfectly well with the OmpA model. |
| |
Keywords: | |
|
|