首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of 1,3-propanediol from recombinant E. coli by optimization process using pure and crude glycerol as a sole carbon source under two-phase fermentation system
Authors:Rosarin Rujananon  Poonsuk Prasertsan  Amornrat Phongdara
Institution:1. Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, 90112, Thailand
2. Palm Oil Products and Technology Research Center (POPTEC), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, 90112, Thailand
3. Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
Abstract:The environmental and nutritional condition for 1,3-propanediol (1,3-PD) production by the novel recombinant E. coli BP41Y3 expressing fusion protein were first optimized using conventional approach. The optimum environmental conditions were: initial pH at 8.0, incubation at 37 °C without shaking and agitation. Among ten nutrient variables, fumarate, (NH4)2HPO4 and peptone were selected to study on their interaction effect using the response surface methodology. The optimum medium contained modified Riesenberg medium (containing pure glycerol as a sole carbon source) supplemented with 63.65 mM fumarate, 3.80 g/L (NH4)2HPO4 and 1.12 g/L peptone, giving the maximum 1,3-PD production of 2.43 g/L. This was 3.5-fold higher than the original medium (0.7 g/L). Two-phase cultivation system was conducted and the effect of pH control (at 6.5, 7.0 and 8.0) was investigated under anaerobic condition by comparing with the no pH control condition. The cultivation system without pH control (initial pH of 8.0) gave the maximum values of 1.65 g/L 1,3-PD, the 1,3-PD production rate of 0.13 g/L h and the yield of 0.31 mol 1,3-PD/mol crude glycerol. Hence, using crude glycerol as a sole carbon source resulted in 32 % lower 1,3-PD production from this recombinant strain that may be due to the presence of various impurities in the crude glycerol of biodiesel plant. In addition, succinic acid was found to be a major product during fermentation by giving the maximum concentration of 11.92 g/L after 24 h anaerobic cultivation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号