首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Silencing of the Tandem Pore Domain Halothane-inhibited K+ Channel 2 (THIK2) Relies on Combined Intracellular Retention and Low Intrinsic Activity at the Plasma Membrane
Authors:Franck C Chatelain  Delphine Bichet  Sylvain Feliciangeli  Marie-Madeleine Larroque  Véronique M Braud  Dominique Douguet  Florian Lesage
Institution:From the Laboratory of Excellence Ion Channel Science and Therapeutics, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France
Abstract:The tandem pore domain halothane-inhibited K+ channel 1 (THIK1) produces background K+ currents. Despite 62% amino acid identity with THIK1, THIK2 is not active upon heterologous expression. Here, we show that this apparent lack of activity is due to a unique combination of retention in the endoplasmic reticulum and low intrinsic channel activity at the plasma membrane. A THIK2 mutant containing a proline residue (THIK2-A155P) in its second inner helix (M2) produces K+-selective currents with properties similar to THIK1, including inhibition by halothane and insensitivity to extracellular pH variations. Another mutation in the M2 helix (I158D) further increases channel activity and affects current kinetics. We also show that the cytoplasmic amino-terminal region of THIK2 (Nt-THIK2) contains an arginine-rich motif (RRSRRR) that acts as a retention/retrieval signal. Mutation of this motif in THIK2 induces a relocation of the channel to the plasma membrane, resulting in measurable currents, even in the absence of mutations in the M2 helix. Cell surface delivery of a Nt-THIK2-CD161 chimera is increased by mutating the arginines of the retention motif but also by converting the serine embedded in this motif to aspartate, suggesting a phosphorylation-dependent regulation of THIK2 trafficking.
Keywords:Electrophysiology  Endoplasmic Reticulum (ER)  Gating  Plasma Membrane  Potassium Channels  Protein Phosphorylation  Trafficking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号