Abstract: | Short-lived insect herbivores should be able to adapt to the resistance mechanisms of their long-lived woody hosts because the life span of a single host will encompass numerous generations of herbivores. However, adaptation may be slowed down if host genotypes can create, in a single genotype, such large phenotypic variation in traits relevant for the herbivore that it matches variance among host genotypes. We tested this hypothesis by measuring leaf consumption by, and growth of, half-sibs of the geometrid moth Epirrita autumnata on individual birch trees, during three instars. The instar×tree interaction, rather than tree identity alone, was a significant variance component for both consumption and growth, indicating that different larval instars ranked individual trees differently. Both consumption and growth varied most between the 3rd and the later (4th and 5th) instars, coinciding with rapid seasonal changes in numerous nutritive and phenolic traits of maturing leaves. Thus, developmental variance in the leaf quality of individual trees may reduce the likelihood of E. autumnata genotypes adapting to the defenses of their host trees. We did not find evidence of in the ability of different half-sibs to utilize individual trees or leaf stages, indicating that E. autumnata larvae are generalists over a wide variety of host traits. |