首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling
Authors:X Tang  Y Hou  G Yang  X Wang  S Tang  Y-E Du  L Yang  T Yu  H Zhang  M Zhou  S Wen  L Xu  M Liu
Abstract:The activation of cancer-associated fibroblasts (CAFs) is a key event in tumor progression, and alternative extracellular matrix (ECM) proteins derived from CAFs induce ECM remodeling and cancer cell invasion. Here we found that miR-200 s, which are generally downregulated in activated CAFs in breast cancer tissues and in normal fibroblasts (NFs) activated by breast cancer cells, are direct mediators of NF reprogramming into CAFs and of ECM remodeling. NFs with downregulated miR-200 s displayed the traits of activated CAFs, including accelerated migration and invasion. Ectopic expression of miR-200 s in CAFs at least partially restored the phenotypes of NFs. CAF activation may be governed by the targets of miR-200 s, Fli-1 and TCF12, which are responsible for cell development and differentiation; Fli-1 and TCF12 were obviously elevated in CAFs. Furthermore, miR-200 s and their targets influenced collagen contraction by CAFs. The upregulation of fibronectin and lysyl oxidase directly by miR-200 or indirectly through Fli-1 or TCF12 contributed to ECM remodeling, triggering the invasion and metastasis of breast cancer cells both in vitro and vivo. Thus, these data provide important and novel insights into breast CAF activation and ECM remodeling, which trigger tumor cell invasion.It has been well established that a reactive microenvironment induces cancer cells to proliferate, migrate and become invasive. Cancer-associated fibroblasts (CAFs) are thought to be the main players among the cohabitating stromal cell types, and they favor tumor progression. The cancer-promoting ability of CAFs is dependent on their activation; however, this process has not been fully explored.The extracellular matrix (ECM) is a complex mixture of structural proteins, proteoglycans and glycoproteins that exerts biochemical and mechanical effects on cells. An increasing body of evidence suggests that ECM remodeling has an important role in cell morphogenesis,1 survival,2 migration and invasion.3 CAFs can deposit certain ECM components and facilitate the directional migration and invasion of carcinoma cells through mechanotransduction-triggered architectural remodeling of the microenvironment.4, 5 However, the mechanism by which activated CAFs stimulate the dysregulation of ECM proteins, thus influencing cancer cell invasion, is not well understood.Previously, our team identified a set of dysregulated miRNAs in breast CAFs using a miRNA microarray, and it was found that the levels of miR-200 family members were noticeably suppressed,6 indicating their importance in CAF function. Whether these downregulated miR-200 s in the stroma drive the activated phenotype of CAFs as well as aberrant ECM protein expression to promote cancer cell invasion is an intriguing question.The miR-200 s family can be functionally divided into cluster 1 (miR-200a and miR-141) and cluster 2 (miR-200b and miR-200c) according to their ''seed'' region for binding to mRNA. The effects of the miR-200 s on fibrosis, epithelial cell characteristics, cell differentiation and tumor progression have been discussed. For example, miR-200b is essential for the regulation of renal fibrogenesis7 and the intestinal fibrosis of Crohn''s disease.8 In aggressive carcinoma cells, the maintenance of EMT,9 tumor growth,10 migration,11 invasion,9 anoikis resistance12 and poor response to chemotherapy13 are enhanced by the reduced expression of miR-200 s. Furthermore, miR-200 s are upregulated during mammary differentiation14 but are downregulated in breast cancer stem cells,15 and these molecules support the maintenance of pluripotent stem cells.16 These previous reports indicate that miR-200 s may have a significant role in CAF activation.In the current work, we first determined that miR-200 s were commonly downregulated in breast CAFs, and this result was also demonstrated in normal fibroblasts (NFs) co-cultured with breast cancer cells. miR-200 s induced the conversion of NFs into CAFs by targeting Fli-1 and TCF12. Re-expression of miR-200 s in CAFs attenuated the activation-associated CAF phenotype. In particular, miR-200 s and their targets all contributed to CAF-associated ECM remodeling through two key ECM remodeling proteins, fibronectin (FN) and lysyl oxidase, further fueling cancer cell invasion and metastasis. Therefore, our data provide new information regarding the role of CAF activation and function in the promotion of cancer cell invasion through ECM remodeling and provide a considerable amount of information that will be useful for the development of stromal therapeutic targets.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号