首页 | 本学科首页   官方微博 | 高级检索  
   检索      

Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum
摘    要:Although the protocatechuate branch of the β-ketoadipate pathway in Gram- bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study, Corynebacterium glutamicum was cultivated with protocatechuate, p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locus ncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes, ncg12314 and ncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). Recombinant Escherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted in C. glutamicum, the ability to degrade and assimilate protocatechuate, p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity of C. glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded by ncg12314 and ncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the GenBank. The functional identification of genes and their unique organization in C. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.

收稿时间:2004-08-13
本文献已被 SpringerLink 等数据库收录!
点击此处可从《中国科学:生命科学英文版》浏览原始摘要信息
点击此处可从《中国科学:生命科学英文版》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号