首页 | 本学科首页   官方微博 | 高级检索  
     


Age-related changes of antioxidant enzyme activities, glutathione status and lipid peroxidation in rat erythrocytes after heat stress
Authors:Oztürk Oğuz  Gümüşlü Saadet
Affiliation:Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey.
Abstract:The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.
Keywords:Heat stress   Age   Erythrocytes   Glucose-6-phosphate dehydrogenase   Cu,Zn-superoxide dismutase   Catalase   Glutathione-S-transferase   Reduced glutathione   Oxidized glutathione   Redox index   Thiobarbituric acid-reactive substances   Wistar rats
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号