首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased salinity improves the thermotolerance of mesophilic nitrification
Authors:Emilie N P Courtens  Nico Boon  Peter De Schryver  Siegfried E Vlaeminck
Institution:1. Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
2. Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Rozier 44, 9000, Gent, Belgium
Abstract:Nitrification is a well-studied and established process to treat ammonia in wastewater. Although thermophilic nitrification could avoid cooling costs for the treatment of warm wastewaters, applications above 40 °C remain a significant challenge. This study tested the effect of salinity on the thermotolerance of mesophilic nitrifying sludge (34 °C). In batch tests, 5 g NaCl L?1 increased the activity of aerobic ammonia-oxidizing bacteria (AerAOB) by 20–21 % at 40 and 45 °C. For nitrite-oxidizing bacteria (NOB), the activity remained unaltered at 40 °C, yet decreased by 83 % at 45 °C. In a subsequent long-term continuous reactor test, temperature was increased from 34 to 40, 42.5, 45, 47.5 and 50 °C. The AerAOB activity showed 65 and 37 % higher immediate resilience in the salt reactor (7.5 g NaCl L?1) for the first two temperature transitions and lost activity from 45 °C onwards. NOB activity, in contrast to the batch tests, was 37 and 21 % more resilient in the salt reactor for the first two transitions, while no difference was observed for the third temperature transition. The control reactor lost NOB activity at 47.5 °C, while the salt reactor only lost activity at 50 °C. Overall, this study demonstrates salt amendment as a tool for a more efficient temperature transition for mesophilic sludge (34 °C) and eventually higher nitrification temperatures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号