首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics of reaction of nitrite with deoxy hemoglobin after rapid deoxygenation or predeoxygenation by dithionite measured in solution and bound to the cytoplasmic domain of band 3 (SLC4A1)
Authors:Salhany James M
Affiliation:Departments of Internal Medicine and Biochemistry and Molecular Biology, University of Nebraska Medical Center, 984510 Nebraska Medical Center, Omaha, Nebraska 68198-4510, USA. jsalhan@attglobal.net
Abstract:
The reaction of deoxyhemoglobin with nitrite was characterized in the presence of dithionite using hemoglobin in solution or bound to the cytoplasmic domain of band 3 (CDB3). Deoxyhemoglobin was generated by predeoxygenation (nitrogen flushing followed by addition of dithionite), or transiently, by rapidly mixing oxyhemoglobin with nitrite and dithionite simultaneously. Wavelength-dependent kinetic studies confirmed the formation of nitrosyl hemoglobin. Furthermore, the rate of reaction was independent of dithionite concentration, indicating that dithionite does not reduce nitrite to nitric oxide directly. Model simulation studies showed that superoxide anion generated by dithionite reduction of molecular oxygen was not a factor in the reaction kinetics. CDB3-bound hemoglobin reacted faster with nitrite than did hemoglobin in solution. This difference was most pronounced for predeoxygenated hemoglobin and least pronounced for rapidly deoxygenated hemoglobin. The smaller difference observed in the rapid deoxygenation experiment was associated with much faster kinetics compared to the predeoxygenation experiment. Model simulation studies showed, and literature evidence indicates, that faster kinetics in the rapid deoxygenation experiment were related to the initial presence of R-state Hb(II)O 2 alphabeta dimers, both in dilute solution and when bound to CDB3. Thus, rapidly deoxygenated CDB3-bound hemoglobin alphabeta dimers react 5-fold faster with nitrite than predeoxygenated tetrameric hemoglobin in solution. Faster nitrite reductase kinetics for CDB3-bound hemoglobin suggests the possibility of preferential nitric oxide generation at the inner surface of the erythrocyte membrane, thus coupling the release of oxygen from hemoglobin to the production and successful release of nitric oxide from the erythrocyte, and the regulation of blood flow.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号