首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance
Authors:Stroch Michal  Kuldová Kristina  Kalina Jirí  Spunda Vladimír
Affiliation:Department of Physics, Faculty of Science, Ostrava University, 30. dubna 22, CZ-701 03 Ostrava 1, Czech Republic.
Abstract:The response of Norway spruce saplings (Picea abies [L.] Karst.) was monitored continuously during short-term exposure (10 days) to high irradiance (HI; 1000mumolm(-2)s(-1)). Compared with plants acclimated to low irradiance (100mumolm(-2)s(-1)), plants after HI exposure were characterized by a significantly reduced CO(2) assimilation rate throughout the light response curve. Pigment contents varied only slightly during HI exposure, but a rapid and strong response was observed in xanthophyll cycle activity, particularly within the first 3 days of the HI treatment. Both violaxanthin convertibility under HI and the amount of zeaxanthin pool sustained in darkness increased markedly under HI conditions. These changes were accompanied by an enhanced non-radiative dissipation of absorbed light energy (NRD) and the acceleration of induction of both NRD and de-epoxidation of the xanthophyll cycle pigments. We found a strong negative linear correlation between the amount of sustained de-epoxidized xanthophylls and the photosystem II (PSII) photochemical efficiency (F(V)/F(M)), indicating photoprotective down-regulation of the PSII function. Recovery of F(V)/F(M) at the end of the HI treatment revealed that Norway spruce was able to cope with a 10-fold elevated irradiance due particularly to an efficient NRD within the PSII antenna that was associated with enhanced violaxanthin convertibility and a light-induced accumulation of zeaxanthin that persisted in darkness.
Keywords:Chlorophyll fluorescence   Non-radiative dissipation   Photoinhibition   Picea abies   Xanthophyll cycle
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号