首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Developmental and pathogen-induced activation of an msr gene, str246C, from tobacco involves multiple regulatory elements
Authors:Clare Gough  Pascale Hemon  Maurice Tronchet  Christophe Lacomme  Yves Marco and Dominique Roby
Institution:(1) Laboratoire de Biologic Moléculaire des Relations Plantes/Microorganismes, UMR CNRS/1NRA 05, BP 27, 31326 Castanet-Tolosan, France
Abstract:A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5prime flanking DNA sequence from the str246C gene fused to the beta-glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized. histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5prime deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 by was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.Joint first authors
Keywords:msr gene  Plant/pathogen interactions  Cis-regulatory elements  Nicotiana tabacum  Promoter regulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号