首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Specific localization of scallop gill epithelial calmodulin in cilia
Authors:EW Stommel  RE Stephens  HR Masure  and JF Head
Abstract:Calmodulin has been isolated and characterized from the gill of the bay scallop aequipecten irradians. Quantitative electrophoretic analysis of epithelial cell fractions show most of the calmodulin to be localized in the cilia, specifically in the detergent- solubilized membrane-matrix fraction. Calmodulin represents 2.2 +/- 0.3 percent of the membrane-matrix protein or 0.41 +/- 0.5 percent of the total ciliary protein. Its concentration is at least 10(-4) M if distributed uniformly within the matrix. Extraction in the presence of calcium suggests that the calmodulin is not bound to the axoneme proper. The ciliary protein is identified as a calmodulin on the basis of its calcium- dependent binding to a fluphenazine-sepharose affinity column and its comigration with bovine brain calmodulin on alkaline-urea and SDS polyacrylamide gels in both the presence and absence of calcium. Scallop ciliary calmodulin activates bovine brain phosphodiesterase to the same extent as bovine brain and chicken gizzard calmodulins. Containing trimethyllysine and lacking cysteine and tryptophan, the amino acid composition of gill calmodulin is typical of known calmodulins, except that it is relatively high in serine and low in methionine. Its composition is less acidic than other calmodulins, in agreement with an observed isoelectric point approximately 0.2 units higher than that of bovine brain. Comparative tryptic peptide mapping of scallop gill ciliary and bovine brain calmodulins indicates coincidence of over 75 percent of the major peptides, but at least two major peptides in each show no near-equivalency. Preliminary results using ATP-reactivated gill cell models show no effect of calcium at micromolar levels on ciliary beat or directionality of the lateral cilia, the cilia which constitute the vast majority of those isolated. However, ciliary arrest will occur at calcium levels more than 150 muM. Because calmodulin usually functions in the micromolar range, its role in this system is unclear. Scallop gill ciliary calmodulin may be involved in the direct regulation of dyneintubule sliding, or it may serve some coupled calcium transport function. At the concentration in which it is found, it must also at least act as a calcium buffer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号