Abstract: | In the absence of divalent cations, at neutral pH, low ionic strength, and low to moderate temperature, tRNAs are known to be in a denatured form, designated form III in the tRNA phase diagram by Cole et al. [Cole, P. E., Yang, S. R., & Crothers, D. M. (1972) Biochemistry 11, 4358-4368]. Form III tRNAPhe from Escherichia coli has been studied at pH 7, 5 mM Na+, and 10 degrees C. As judged from ethidium bromide intercalation, it exhibits extensive secondary structure. 4-Thiouridine in position 8 of the tRNAPhe sequence was used as a built-in photoaffinity probe. Spectroscopic and spectrofluorometric analysis in the near-UV range of form III tRNAPhe irradiated with broad-band near-UV light to completion of the reaction before or after reduction with NaBH4 revealed that the Pdo(4-5)Cyt (8-C) and Pdo(4-5)Urd (8-U) adducts form in equimolar yield. In different experiments, the overall yield of s4U conversion to these adducts varies between 20 and 40%. The remaining s4U is photolyzed to weakly absorbing product(s) in the near-UV range. The disappearance of s4U follows biexponential kinetics while the 8-C adduct formation follows monoexponential kinetics, indicating the presence of at least two tRNA classes of conformers, not in equilibrium on the time scale of the reaction. Migration on a denaturing polyacrylamide gel of irradiated form III tRNAPhe revealed three main bands, D1, D2, and D3, and no slowly migrating tRNA dimers. D1 migrates at the control position and presumably contains the photolysis product(s) P. The fast-migrating D2 and D3 bands contain 8-Pyr cross-links which were identified by sequence analysis as 8-(66-68) in D2 and 8-(40-43) and 8-(59-62) in D3. On the basis of these data, it is proposed that the minor poorly photoreactive class II conformers are the cloverleaf and close variants, whereas the major class I cross-linkable conformers are essentially long-extended secondary structures. Clearly, our data demonstrate the polymorphism of form III tRNAPhe. |