首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ligand-regulated peptide aptamers that inhibit the 5'-AMP-activated protein kinase
Authors:Miller Russell A  Binkowski Brock F  Belshaw Peter J
Institution:Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
Abstract:In an effort to extend the peptide aptamer approach, we have developed a scaffold protein that allows small molecule ligand control over the presentation of a peptide aptamer. This scaffold, a fusion of three protein domains, FKBP12, FRB, and GST, presents a peptide linker region for target protein binding only in the absence of the small molecule Rapamycin or other non-immunosuppressive Rapamycin derivatives. Here we describe the characterization of ligand-regulated peptide aptamers that interact with and inhibit the 5'-AMP-activated protein kinase (AMPK). AMPK, a central regulator of cellular energy homeostasis, responds to high cellular AMP/ATP ratios by promoting energy producing pathways and inhibiting energy consuming biosynthetic pathways. We have characterized 15 LiRPs of similar, poly-basic sequence and have determined that they interact with the substrate peptide binding region of both AMPK alpha1 and alpha2. These proteins, some of which serve as poor substrates of AMPK, inhibit the kinase as pseudosubstrates in a Rapamycin-regulated fashion in vitro, an effect that is largely competitive with substrate peptide and mediated by an increase in the kinase's apparent K(m) for substrate peptide. This pseudosubstrate inhibition of AMPK by LiRP proteins reduced the AMP stimulation of AMPK in vitro and caused the inhibited state of the kinase to kinetically resemble the basal, unstimulated state of AMPK, providing potential insight into the molecular mechanisms of AMP stimulation of AMPK.
Keywords:AMPK  AMP-activated protein kinase  LiRP  ligand-regulated peptide  5-FOA  5-fluoroorotic acid
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号