首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of Macromolecular Biosynthesis on Cellular Autolysis in Streptococcus faecalis
Authors:Mitchel Sayare  Lolita Daneo-Moore  and Gerald D Shockman
Abstract:The addition of several different antibiotics to growing cultures of Streptococcus faecalis, ATCC 9790, was found to inhibit autolysis of cells in sodium phosphate buffer. When added to exponential-phase cultures, mitomycin C (0.4 mug/ml) or phenethyl alcohol (3 mg/ml) inhibited deoxyribonucleic acid synthesis, but did not appreciably affect the rate of cellular autolysis. Addition of chloramphenicol (10 mug/ml), tetracycline (0.5 mug/ml), puromycin (25 mug/ml), or 5-azacytidine (5 mug/ml) to exponential-phase cultures inhibited protein synthesis and profoundly decreased the rate of cellular autolysis. Actinomycin D (0.075 mug/ml) and rifampin (0.01 mug/ml), both inhibitors of ribonucleic acid (RNA) synthesis, also reduced the rate of cellular autolysis. However, the inhibitory effect of actinomycin D and rifampin on cellular autolysis was more closely correlated with their concomitant secondary inhibition of protein synthesis than with the more severe inhibition of RNA synthesis. The dose-dependent inhibition of protein synthesis by 5-azacytidine was quickly diluted out of a growing culture. Reversal of inhibition was accompanied by a disproportionately rapid increase in the ability of cells to autolyze. Thus, inhibition of the ability of cells to autolyze can be most closely related to inhibition of protein synthesis. Furthermore, the rapidity of the response of cellular autolysis to inhibitors of protein synthesis suggests that regulation is exerted at the level of autolytic enzyme activity and not enzyme synthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号