首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolomics study of the hepatoprotective effect of Phellinus igniarius in chronic ethanol-induced liver injury mice using UPLC-Q/TOF-MS combined with ingenuity pathway analysis
Institution:1. Research Centre of Metabolomics, Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, PR China;2. Zhejiang Chinese Medical University, Hangzhou 310053, PR China;3. Institute of Translational Medicine & Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, PR China;4. Zhejiang Key Laboratory of Tumor Diagnosis and Treatment with Integrated TCM and Western Medicine, Hangzhou 310012, PR China
Abstract:BackgroundPhellinus igniarius (L.) Quèl as a potential medicinal mushroom possesses multiple biological activities including hepatoprotection, but the hepatoprotective mechanism is not clear.PurposeTo elucidate the hepatoprotective effect and potential target of P. igniarius.MethodsThe male C57BL/6 mice were fed with the Lieber–DeCarli diet containing alcohol or isocaloric maltose dextrin as control diet with or without P. igniarius decoction (PID) in the dosage of 0.65 g/kg and 2.6 g/kg. The levels of serum biomarkers were detected by an automatic biochemistry analyser. The histopathological changes of liver were observed by hematoxylin and eosin (H&E) staining. Ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was applied for investigating the dynamic changes of serum metabolites in chronic ethanol-induced liver injury mice and after treatment with PID. Ingenuity pathway analysis (IPA) was employed to identify the potential target of PID.ResultsPID could significantly reduce the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG) and total bile acid (TBA) in serum and improved hepatic steatosis and inflammation. In terms of metabolism, a total of 36 serum differential metabolites were identified, and PID intervention regulated 24 of them, involving the key metabolic pathways such as the biosynthesis of unsaturated fatty acids, primary bile acid biosynthesis, glycerophospholipid metabolism, fatty acids biosynthesis, ether lipid metabolism and arachidonic acid metabolism. On the mechanism, IPA showed that farnesol X receptor (FXR) was the major potential target for PID, and PID could improve chronic alcohol intake induced by the inhibition of mRNA expression of FXR in the liver and the activation of mRNA expression of FXR in the intestine in mice.ConclusionThe present study for the first time systematically illustrated the hepatoprotective effect of P. igniarius and preliminarily explored its potential target FXR. P. igniarius might be exploited as a promising therapeutic option for alcoholic liver injury.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号