首页 | 本学科首页   官方微博 | 高级检索  
     


Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish,Gymnarchus niloticus
Authors:M. Kawasaki
Affiliation:1. Department of Biology, Gilmer Hall, University of Virginia, 22903, Charlottesville, VA, USA
Abstract:An African electric fish, Gymnarchus, and a South American electric fish, Eigenmannia, are believed to have evolved their electrosensory systems independently. Both fishes, nevertheless, gradually shift the frequency of electric organ discharge away when they encounter a neighbor of a similar discharge frequency. Computational algorithms employed by Gymnarchus for this jamming avoidance response have been identified in this study for comparison with those of extensively studied Eigenmannia.
  1. Gymnarchus determines whether it should raise or lower its discharge frequency based solely upon the signal mixture of its own reafferent and the exafferent signal from a neighbor, and does not internally refer to the pacemaker command signal which drives its own discharge.
  2. The signal mixture is analyzed in terms of the time courses of amplitude modulation and phase modulation at each area of the body surface.
  3. Phase of the signal mixture at each area is compared with that of another area for the detection of phase modulation.
  4. Unambiguous information necessary for the jamming avoidance response is extracted by integrating information from all body areas each of which yields ambiguous information.
  5. These computational features are identical to those of Eigenmannia, suggesting that the neural circuit for jamming avoidance responses may have evolved from preexisting mechanisms for electrolocation in both fishes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号