Evidence for allelic exclusion in Chinese hamster ovary cells. |
| |
Authors: | R Holliday T Ho |
| |
Affiliation: | CSIRO Laboratory for Molecular Biology, North Ryde, NSW, Australia. |
| |
Abstract: | Earlier results suggested that the functional hemizygosity of genes in pseudodiploid Chinese hamster ovary (CHO) cells is due to the silencing of one allele by DNA methylation. From this one could make a strong prediction that we have now been able to confirm by genetic experiments, using thymidine kinase (TK) alleles. TK- mutants induced by ethylmethane sulphonate (EMS) were all revertible to TK+ at high frequency by the demethylating agent 5-azacytidine (5-aza-CR). This revertibility was due to reactivation of a silent nonmutant TK allele. Further mutagenesis by EMS yielded TK- derivatives that were no longer revertible by 5-aza-CR; these are assumed to have mutations in both alleles. TK- cells were also transfected with equine herpes virus TK+ DNA, and the TK+ derivatives were shown to be markedly less stable than cells with the normal TK+ gene. CHO cells lack metallothionein activity (sensitive to cadmium), and also require proline for growth, because genes have become silenced during the establishment of the cell line. In both cases 5-aza-CR reactivates these genes to give the cadmium resistant and proline independent phenotypes. Long-term experiments with reactivants in the absence of selection showed that the genes become silent, presumably as a result of de novo methylation. A strain resistant to cytosine arabinoside (araCR) was also resistant to 5-azadeoxycytidine (5-aza-CdR), but not to 5-aza-CR, which would be expected if the araCR strain lacked deoxycytidine kinase.(ABSTRACT TRUNCATED AT 250 WORDS) |
| |
Keywords: | |
|
|