首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan
Authors:Raymond Jon B  Mahapatra Sebabrata  Crick Dean C  Pavelka Martin S
Affiliation:Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA.
Abstract:The peptidoglycan of most bacteria consists of a repeating disaccharide unit of beta-1,4-linked N-acetylmuramic acid and N-acetylglucosamine. However, the muramic acid moieties of the mycobacterial peptidoglycan are N-glycolylated, not N-acetylated. This is a rare modification seen only in the peptidoglycan of mycobacteria and five other closely related genera of bacteria. The N-glycolylation of sialic acids is a unique carbohydrate modification that has been studied extensively in eukaryotes. However, the significance of the N-glycolylation of bacterial peptidoglycan is unknown. The goal of this project was to identify the gene encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. We developed a novel assay for the mycobacterial UDP-N-acetylmuramic acid hydroxylation reaction and demonstrated that Mycobacterium smegmatis has an enzyme activity that can convert UDP-N-acetylmuramic acid to UDP-N-glycolylmuramic acid. We identified the gene namH encoding the mycobacterial UDP-N-acetylmuramic acid hydroxylase by computer data base searching and motif comparisons with the eukaryotic enzymes responsible for the N-glycolyation of sialic acids. The namH gene is not essential for in vitro growth as we were successful in deleting the gene in M. smegmatis. The M. smegmatis mutant is devoid of UDP-N-acetylmuramic acid hydroxylase activity and synthesizes only N-acetylated muropeptide precursors. Furthermore, the mutant exhibits increased susceptibility to beta-lactam antibiotics and lysozyme. Our studies suggest that the N-glycolylation of mycobacterial peptidoglycan may play a role in lysozyme resistance or may contribute to the structural stability of the cell wall architecture.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号