首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system.
Authors:J E Barnett  G D Holman  R A Chalkley  and K A Munday
Abstract:6-O-methyl-, 6-O-propyl-, 6-O-pentyl- and 6-O-benzyl-D-galactose, and 6-O-methyl-, 6-O-propyl- and 6-O-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-O-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-O-alkyl-D-galactoses penetrate by a slower D-glucose-insensitive route at rates proportional to their olive oil/water partition coefficients. 6-O-n-Propyl-D-glucose and 6-O-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-beta-D-glucopyranoside, which also penetrates the membrane slowly by a glucose-insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-O-alkyl-D-galactoses, like the other nontransported C-4 and C-6 derivatives, maltose and 4,6-O-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl beta-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. An asymmetric mechanism is proposed with two conformational states in which the sugar binds to the transport system so that C-4 and C-6 are in contact with the solvent on the outside and C-1 is in contact with the solvent on the inside of the cell. It is suggested that fluorodinitrobenzene reacts with the form of the transport system that binds sugars at the inner side of the membrane. An Appendix describes the theoretical basis of the experimental methods used for the determination of kinetic constants for non-permeating inhibitors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号