首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interactive Effects of Abiotic Stress and Elevated CO2 on Physio-Chemical and Photosynthetic Responses in Suaeda Species
Authors:Haque  Md Intesaful  Siddiqui  Shahrukh A  Jha  B  Rathore  Mangal S
Institution:1.Division of Applied Phycology and Biotechnology, Council of Scientific and Industrial Research—Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat, 364002, India
;
Abstract:

Suaeda fruticosa and S. monoica are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-imposed salinity, and 10% polyethylene glycol 6000 imposed osmotic stress at 380 (ambient) and 1200 (elevated) µmol mol–1 CO2 concentrations. SW salinity enhanced the growth in both species; however, compared with S. fruticosa, the S. monoica exhibited comparatively better growth and biomass accumulation under saline conditions at elevated CO2. Results demonstrated better photosynthetic performances of S. monoica under stress conditions at both levels of CO2, and this resulted in higher accumulation of carbon, nitrogen, sugar, and starch contents. S. monoica exhibited improved antenna size, electron transfer at PSII donor side, and efficient working of photosynthetic machinery at elevated CO2, which might be due to efficient upstream utilization of reducing power to fix the CO2. The δ13C results supported the operation of C4 CO2 fixation in S. monoica and C3 or intermediate pathway of CO2 fixation in S. fruticosa. Lower accumulation of reactive oxygen species, reduced membrane damage, lowered solute potential, and higher accumulation of proline and polyphenol contents indicated elevated CO2-induced abiotic stress tolerance in Suaeda. Higher activity of antioxidant enzymes in both species at both levels of CO2 help plants to combat the oxidative stress. Upregulation of NADP-dependent malic enzyme and NADP-dependent malate dehydrogenase genes indicated their role in abiotic stress tolerance as well as photosynthetic carbon (C) sequestration. Operation of C4 type CO2 fixation in S. monoica and an intermediate CO2 fixation in S. fruticosa could be the possible reason for the superior photosynthetic efficiency of S. monoica under stress conditions at elevated CO2.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号