首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Anions on the Capacity and Affinity of Copper Adsorption in Two Variable Charge Soils
Authors:S?Yu  Email author" target="_blank">Z?L?HeEmail author  C?Y?Huang  G?C?Chen  D?V?Calvert
Institution:(1) Department of Resource Science, College of Environmental and Resource Sciences, Zhejiang University, Huajiachi Campus, 268 Kaixuan Road, 310029 Zhejiang, Hangzhou, China;(2) Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, 2199 S. Rock Road, 34945-3138 Fort Pierce, FL, USA
Abstract:Effects of nitrate,(NO3) chloride (Cl), sulfate (SO42-, and acetate (Ac) on Cu2+ adsorption and affinity of the adsorbed Cu2+ were evaluated in two Fe and Al enriched variable charge soils from Southern China. The maximum adsorption of Cu2+ (M, a parameter from the Langmuir isotherm model) in the presence of different anions decreased in the order Cl > Ac > NO3 > SO42- for both soils. The clayey loamy soil (mixed siliceous thermic Typic Dystrochrept, TTD), developed on the Arenaceous rock, adsorbed less Cu2+ than the clayey soil (kaolinitic thermic Plinthudults, KTP), derived from the Quaternary red earths, regardless of anion type present in the medium. The affinity of adsorbed Cu2+ to both soils could be characterized by the Kd (distribution coefficient) values and successive extraction of the adsorbed Cu2+ with 1-mol NH4Ac L−1. The log10Kd value was smaller for the TTD soil than for the KTP soil and decreased in the order of Cl > NO3 > SO42- > Ac at low initial Cu2+ concentrations (≤40 mg Cu2+L−1), whereas at 80 mg Cu2+L−1, the log10Kd value was similar for NO3, SO42-, and Ac, but was slightly higher for Cl. Complete extraction of Cu2+ adsorbed in the presence of Ac was achieved. Influence of NO3 and SO42- on the affinity of adsorbed Cu2+ was similar, but the effects of Cl depended on the initial Cu2+ concentrations. The extracted percentage of the adsorbed Cu2+ in the presence of NO3 or SO42- increased with increasing Cu2+ adsorption saturation. The presence of Cl, NO3, or SO42- markedly decreased the equilibrium solution pH for both soils with increasing initial Cu2+ concentrations, and the delta pH values at the highest Cu2+ level were 0.5, 0.63, and 0.55 U for the TTD soil and 0.79, 0.84, and 0.93 U for the KTP soil, respectively for the three anions. The presence of Ac had a minimal influence on the equilibrium solution pH because of the buffering nature of the NaAc/HAc medium which buffered the released protons. The effects of anions on Cu2+ adsorption and affinity of the adsorbed Cu2+ were dependent on anion types and were apparently related to the altered surface properties caused by anion adsorption and/or the formation of anion– Cu2+ complexes.
Keywords:Affinity  Anions  Copper adsorption  Variable charge soils
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号