首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS® bio‐blends
Authors:Vinoy Thomas  Xing Zhang  Yogesh K Vohra
Institution:1. Department of Physics, Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294;2. telephone: 205‐581‐2944;3. fax: 205‐581‐2953 (V.T.);4. telephone: 205‐934‐6662 (Y.K.V.);5. fax: 205‐975‐8009;6. Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
Abstract:Electrospun tubular conduit (4 mm inner diameter) based on blends of polydioxanone (PDS II®) and proteins such as gelatin and elastin having a spatially designed trilayer structure was prepared for arterial scaffolds. SEM analysis of scaffolds showed random nanofibrous morphology and well‐interconnected pore network. Due to protein blending, the fiber diameter was reduced from 800–950 nm range to 300–500 nm range. Fourier‐transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results confirmed the blended composition and crystallinity of fibers. Pure PDS scaffold under hydrated state exhibited a tensile strength of 5.61 ± 0.42 MPa and a modulus of 17.11 ± 1.13 MPa with a failure strain of 216.7 ± 13%. The blending of PDS with elastin and gelatin has decreased the tensile properties. A trilayer tubular scaffold was fabricated by sequential electrospinning of blends of elastin/gelatin, PDS/elastin/gelatin, and PDS/gelatin (EG/PEG/PG) to mimic the complex matrix structure of native arteries. Under hydrated state, the trilayer conduit exhibited tensile properties (tensile strength of 1.77 ± 0.2 MPa and elastic modulus of 5.74 ± 3 MPa with a failure strain of 75.08 ± 10%) comparable to those of native arteries. In vitro degradation studies for up to 30 days showed about 40% mass loss and increase in crystallinity due to the removal of proteins and “cleavage‐induced crystallization” of PDS. Biotechnol. Bioeng. 2009; 104: 1025–1033. © 2009 Wiley Periodicals, Inc.
Keywords:nanofibers  polydioxanone  electrospinning  vascular grafts  biodegradation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号