首页 | 本学科首页   官方微博 | 高级检索  
     


Seasonal variation in the mating system of a selfing annual with large floral displays
Authors:Ge Yin  Spencer C. H. Barrett  Yi-Bo Luo  Wei-Ning Bai
Affiliation:1.Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.;2.State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China and;3.Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
Abstract:Background and Aims Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual with showy, insect-pollinated, ‘one-day’ flowers capable of delayed selfing. We examined the influence of several biotic and abiotic environmental factors on day-to-day variation in fruit set, seed set and patterns of mating.Methods We recorded daily flower number and pollinator abundance in nine 3 × 3-m patches in a population at Mu Us Sand land, Inner Mongolia, China. From marked flowers we collected data on daily fruit and seed set and estimated outcrossing rate and biparental inbreeding using six microsatellite loci and 172 open-pollinated families throughout the flowering period.Key Results Flower density increased significantly over most of the 50-d flowering season, but was associated with a decline in levels of pollinator service by bees, particularly on windy days. Fruit and seed set declined over time, especially during the latter third of the flowering period. Multilocus estimates of outcrossing rate were obtained using two methods (the programs MLTR and BORICE) and both indicated high selfing rates of ∼80 %. There was evidence for a significant increase in levels of selfing as the flowering season progressed and pollinator visitation declined. Biparental inbreeding also declined significantly as the flowering season progressed.Conclusions Temporal variation in outcrossing rates may be a common feature of the mating biology of annual, insect-pollinated plants of harsh environments but our study is the first to examine seasonal mating-system dynamics in this context. Despite having large flowers and showy floral displays, I. sinensis attracted relatively few pollinators. Delayed selfing by corolla dragging largely explains the occurrence of mixed mating in I. sinensis, and this mode of self-fertilization probably functions to promote reproductive assurance when pollinator service is limited by windy environmental conditions and competition from co-occurring flowering plants.
Keywords:corolla dragging   delayed selfing   Incarvillea   mixed mating   pollinator service   reproductive assurance   sand desert
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号