首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leukocyte chemoattractant peptides from the serpin heparin cofactor II
Authors:F C Church  C W Pratt  M Hoffman
Institution:Department of Pathology, University of North Carolina School of Medicine, Chapel Hill 27599.
Abstract:Heparin cofactor II (HC) is a plasma serine proteinase inhibitor (serpin) that inhibits the coagulant proteinase alpha-thrombin. We have recently demonstrated that proteolysis of HC by catalytic amounts of polymorphonuclear leukocyte proteinases (elastase or cathepsin G) generates leukocyte chemotaxins (Hoffman, M., Pratt, C. W., Brown, R. L., and Church, F. C. (1989) Blood 73, 1682-1685). One of four peptides produced when HC is degraded by neutrophil elastase has chemotactic activity for both monocytes and neutrophils with maximal migration comparable to formyl-Met-Leu-Phe, the "gold standard" bacterially derived chemotaxin. The amino-terminal sequence of this HC peptide is Asp-Phe-His-Lys-Glu-Asn-Thr-Val-... and the peptide corresponds to Asp-39 to Ile-66 of HC. A variety of synthetic peptides derived from this sequence were evaluated for leukocyte migration activity, and a dodecapeptide from Asp-49 to Tyr-60 (Asp-Trp-Ile-Pro-Glu-Gly-Glu-Glu-Asp-Asp-Asp-Tyr) was identified as the active site for leukocyte chemotactic action. The 12-mer synthetic peptide possesses significant neutrophil chemotactic action at 1 nM (60% of the maximal activity of formyl-Met-Leu-Phe), while a peptide with the reverse sequence has essentially no chemotactic activity. Cross-desensitization experiments also show that pretreatment of neutrophils with a 19-mer peptide (Asn-48 to Ile-66) greatly reduces subsequent chemotaxis to HC-neutrophil elastase proteolysis reaction products. When injected intraperitoneally in mice, the HC-neutrophil elastase digest elicits neutrophil migration. Our results demonstrate that not only does HC function as a thrombin inhibitor, but that limited proteolysis of HC near the amino terminus yields biologically active peptide(s) which might participate in inflammation and in wound healing and tissue repair processes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号