首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Colloquium 9: Structural and Molecular Dissection of the Node of Ranvier. Sodium channel β subunits: multifunctional molecules at the node of Ranvier
Authors:L L  Isom
Abstract:Voltage‐gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore‐forming α subunit and two auxiliary β subunits. The α subunits are members of a large gene family containing the voltage‐gated sodium, potassium, and calcium channels. Sodium channel α subunits form a gene subfamily with at least 11 members. Mutations in sodium channel α subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel β subunits with at least one alternative splice product. Unlike the pore‐forming α subunits, the sodium channel β subunits are not structurally related to β subunits of calcium and potassium channels. Sodium channel β subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that β subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS + 1 epilepsy in human families. We propose that the sodium channel signalling complex at nodes of Ranvier involves β subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPβ, and extracellular matrix molecules such as tenascin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号