首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The roles of amino acid residues at positions 216 and 219 in the structural stability and metabolic functions of rat cytochrome P450 2D1 and 2D2
Authors:Narimatsu Shizuo  Kiryu Kimio  Yonemoto Rei  Yoshino Manabu  Kobatake Mitsuko  Kazamori Daichi  Hagino Saori  Masuda Kazufumi  Katsu Takashi  Asanuma Masato  Kumamoto Takuya  Ishikawa Tsutomu  Funae Yoshihiko  Yamano Shigeru  Hanioka Nobumitsu  Naito Shinsaku
Institution:Laboratory of Health Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan. shizuo@pharm.okayama-u.ac.jp
Abstract:We examined the effects of the mutual substitution of amino acid residues at positions 216 and 219 between rat CYP2D1 and CYP2D2 on their microsomal contents and enzymatic functions using a yeast cell expression system and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) as a substrate. CYP2D1 has amino acid residues, leucine and valine, at positions of 216 and 219, respectively, whereas CYP2D2 has phenylalanine and aspartic acid at the same positions. In reduced carbon monoxide-difference spectroscopic analysis, the substitution of Asp-219 of CYP2D2 by valine markedly increased a peak at 450 nm and concomitantly decreased a peak at 420 nm, while the replacement of Phe-216 of CYP2D2 with leucine gave no observable change. The double substitution of Phe-216 and Asp-219 by leucine and valine, respectively, yielded a typical CYP spectrum. The substitution of Val-219 of CYP2D1 by aspartic acid decreased the CYP content to one-half, whereas the replacement of Leu-216 with phenylalanine did not have any effect. The double substitution of Leu-216 and Val-219 of CYP2D1 by phenylalanine and aspartic acid, respectively, diminished the CYP content by 90%. CYP2D1 catalyzed both 5-MeO-DIPT N-deisopropylation and O-demethylation at relatively low levels, while CYP2D2 catalyzed 5-MeO-DIPT O-demethylation efficiently. The substitution of the amino acid at position 216 substantially increased 5-MeO-DIPT oxidation activities of the two CYP2D enzymes. The replacement of the amino acid at position 219 increased the 5-MeO-DIPT O- and N-dealkylation activities of CYP2D1, whereas it decreased the 5-MeO-DIPT O-demethylation activity of CYP2D2. These results indicate that amino acid residues at positions 216 and 219 have important roles in the enzymatic functions of rat CYP2D1 and CYP2D2.
Keywords:CYP2D1  CYP2D2  Amino acids at positions 216 and 219  Protein stability  5-Methoxy-N  N-diisopropyltryptamine  Site-directed mutagenesis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号