首页 | 本学科首页   官方微博 | 高级检索  
     


Two modes of regulation of the phospholipase C-linked substance-P receptor in rat parotid acinar cells.
Authors:H Sugiya   J F Obie     J W Putney   Jr
Affiliation:Laboratory of Cellular and Molecular Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.
Abstract:
In rat parotid acinar cells prelabelled with [3H]inositol, substance P (100 nM) induced the formation of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Ins(1,4,5)P3 reached a maximum 7 s after substance P stimulation, and thereafter decreased and reached a stable value at 60 s. When the cells were exposed to substance P for 10, 30, 60, or 300 s, washed, and re-exposed to this peptide, the formation of [3H]inositol trisphosphate (InsP3) was attenuated in a time-dependent manner. In the cells pretreated as described above, the number of [3H]substance-P-binding sites (Bmax) was also decreased. Possible role(s) of Ca2+ and protein kinase (protein kinase C) control mechanisms in regulating substance P responses were investigated. Desensitization of substance P-induced InsP3 was not affected by the Ca2+ ionophore ionomycin, nor was it dependent on Ca2+ mobilization. On the other hand, in the presence of 4 beta-phorbol 12,13-dibutyrate (PDBu) and 12-O-tetradecanoyl-4 beta-phorbol 13-acetate, known activators of protein kinase C, substance P-induced InsP3 formation was inhibited. However, PDBu had no effect on [3H]substance P binding, whether present during the assay or when cells were pretreated. The persistent desensitization of InsP3 formation induced by substance P was not affected by PDBu. These results suggest that the persistent desensitization of InsP3 formation induced by substance P is a homologous process involving down-regulation of the substance P receptor; the mechanism does not appear to involve, or to be affected by, the Ca2+ or protein kinase C signalling systems. Protein kinase C activation can, however, inhibit substance P-induced InsP3 formation, which may indicate the presence of a negative-feedback control on the substance P pathway.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号