首页 | 本学科首页   官方微博 | 高级检索  
     


EB1 Levels Are Elevated in Ascorbic Acid (AA)-stimulated Osteoblasts and Mediate Cell-Cell Adhesion-induced Osteoblast Differentiation
Authors:Sofia Pustylnik  Cara Fiorino  Noushin Nabavi  Tanya Zappitelli  Rosa da Silva  Jane E. Aubin  Rene E. Harrison
Affiliation:From the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.;the §Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, and ;the Departments of Medical Biophysics and ;Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
Abstract:
Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation.
Keywords:beta-Catenin   Cell Biology   E-cadherin   Microtubules   Osteoblasts   EB1   Cell Contacts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号