首页 | 本学科首页   官方微博 | 高级检索  
     


GUESS-ing Polygenic Associations with Multiple Phenotypes Using a GPU-Based Evolutionary Stochastic Search Algorithm
Authors:Leonardo Bottolo  Marc Chadeau-Hyam  David I. Hastie  Tanja Zeller  Benoit Liquet  Paul Newcombe  Loic Yengo  Philipp S. Wild  Arne Schillert  Andreas Ziegler  Sune F. Nielsen  Adam S. Butterworth  Weang Kee Ho  Rapha?le Castagné   Thomas Munzel  David Tregouet  Mario Falchi  Fran?ois Cambien  B?rge G. Nordestgaard  Fredéric Fumeron  Anne Tybj?rg-Hansen  Philippe Froguel  John Danesh  Enrico Petretto  Stefan Blankenberg  Laurence Tiret  Sylvia Richardson
Abstract:Genome-wide association studies (GWAS) yielded significant advances in defining the genetic architecture of complex traits and disease. Still, a major hurdle of GWAS is narrowing down multiple genetic associations to a few causal variants for functional studies. This becomes critical in multi-phenotype GWAS where detection and interpretability of complex SNP(s)-trait(s) associations are complicated by complex Linkage Disequilibrium patterns between SNPs and correlation between traits. Here we propose a computationally efficient algorithm (GUESS) to explore complex genetic-association models and maximize genetic variant detection. We integrated our algorithm with a new Bayesian strategy for multi-phenotype analysis to identify the specific contribution of each SNP to different trait combinations and study genetic regulation of lipid metabolism in the Gutenberg Health Study (GHS). Despite the relatively small size of GHS (n = 3,175), when compared with the largest published meta-GWAS (n>100,000), GUESS recovered most of the major associations and was better at refining multi-trait associations than alternative methods. Amongst the new findings provided by GUESS, we revealed a strong association of SORT1 with TG-APOB and LIPC with TG-HDL phenotypic groups, which were overlooked in the larger meta-GWAS and not revealed by competing approaches, associations that we replicated in two independent cohorts. Moreover, we demonstrated the increased power of GUESS over alternative multi-phenotype approaches, both Bayesian and non-Bayesian, in a simulation study that mimics real-case scenarios. We showed that our parallel implementation based on Graphics Processing Units outperforms alternative multi-phenotype methods. Beyond multivariate modelling of multi-phenotypes, our Bayesian model employs a flexible hierarchical prior structure for genetic effects that adapts to any correlation structure of the predictors and increases the power to identify associated variants. This provides a powerful tool for the analysis of diverse genomic features, for instance including gene expression and exome sequencing data, where complex dependencies are present in the predictor space.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号