首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue
Authors:Vanpouille Christophe  Deligny Audrey  Delehedde Maryse  Denys Agnès  Melchior Aurélie  Liénard Xavier  Lyon Malcolm  Mazurier Joël  Fernig David G  Allain Fabrice
Institution:Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche Number 8576 du CNRS, Institut de Recherche Fédératif No. 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France.
Abstract:Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号