首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional characterization of key structural genes in rice flavonoid biosynthesis
Authors:Chun Hat Shih  Hung Chu  Lee Kwan Tang  Wataru Sakamoto  Masahiko Maekawa  Ivan K Chu  Mingfu Wang  Clive Lo
Institution:(1) School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China;(2) Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;(3) Research Institute for Bioresources, Okayama University, Okayama, Japan
Abstract:Rice is a model system for monocot but the molecular features of rice flavonoid biosynthesis have not been extensively characterized. Rice structural gene homologs encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) were identified by homology searches. Unique differential expression of OsF3H, OsDFR, and OsANS1 controlled by the Pl w locus, which contains the R/B-type regulatory genes OSB1 and OSB2, was demonstrated during light-induced anthocyanin accumulation in T65-Plw seedlings. Previously, F3H genes were often considered as early genes co-regulated with CHS and CHI genes in other plants. In selected non-pigmented rice lines, OSB2 is not expressed following illumination while their expressed OSB1sequences all contain the same nucleotide change leading to the T64 M substitution within the conserved N-terminal interacting domain. Furthermore, the biochemical roles of the expressed rice structural genes (OsCHS1, OsCHI, OsF3H, and OsF3′H) were established in planta for the first time by complementation in the appropriate Arabidopsis transparent testa mutants. Using yeast two-hybrid analysis, OsCHS1 was demonstrated to interact physically with OsF3H, OsF3′H, OsDFR, and OsANS1, suggesting the existence of a macromolecular complex for anthocyanin biosynthesis in rice. Finally, flavones were identified as the major flavonoid class in the non-pigmented T65 seedlings in which the single-copy OsF3H gene was not expressed. Competition between flavone and anthocyanin pathways was evidenced by the significant reduction of tricin accumulation in the T65-Plw seedlings. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Rice  Flavonoid structural genes  Anthocyanin  Flavones
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号