首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissipation of pH Gradients in Tonoplast Vesicles and Liposomes by Mixtures of Acridine Orange and Anions: Implications for the Use of Acridine Orange as a pH Probe
Authors:Pope A J  Leigh R A
Institution:AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
Abstract:Acridine orange altered the response to anions of both ATP and in-organic pyrophosphate-dependent pH gradient formation in tonoplast vesicles isolated from oat (Avena sativa L.) roots and red beet (Beta vulgaris L.) storage tissue. When used as a fluorescent pH probe in the presence of I, ClO3, NO3, Br, or SCN, acridine orange reported lower pH gradients than either quinacrine or 14C]methylamine. Acridine orange, but not quinacrine, reduced 14C]methylamine accumulation when NO3 was present indicating that the effect was due to a real decrease in the size of the pH gradient, not a misreporting of the gradient by acridine orange. Other experiments indicated that acridine orange and NO3 increased the rate of pH gradient collapse both in tonoplast vesicles and in liposomes of phosphatidylcholine and that the effect in tonoplast vesicles was greater at 24°C than at 12°C. It is suggested that acridine orange and certain anions increase the permeability of membranes to H+, possibly because protonated acridine orange and the anions form a lipophilic ion pair within the vesicle which diffuses across the membrane thus discharging the pH gradient. The results are discussed in relation to the use of acridine orange as a pH probe. It is concluded that the recently published evidence for a NO3/H+ symport involved in the export of NO3 from the vacuole is probably an artefact caused by acridine orange.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号