首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Improving magnesium uptake,photosynthesis and antioxidant enzyme activities of watermelon by grafting onto pumpkin rootstock under low magnesium
Authors:Yuan Huang  Yanyan Jiao  Muhammad Azher Nawaz  Chen Chen  Li Liu  Zhen Lu  Qiusheng Kong  Fei Cheng  Zhilong Bie
Institution:1.College of Horticulture and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education,Huazhong Agricultural University,Wuhan,People’s Republic of China
Abstract:

Background and aims

Magnesium (Mg) is an essential macronutrient that plays an important role in numerous physiological and biochemical processes of plant. However, Mg deficiency commonly occurs worldwide. Watermelon is an important crop that often suffers from Mg deficiency. This study aims to test whether watermelon performance can be improved by grafting onto rootstocks under low Mg and to clarify the underlying physiological mechanism.

Methods

Self-grafted, bottle gourd (Jingxinzhen No.1) and pumpkin (Jingxinzhen No.4) rootstock-grafted plants were treated with three Mg concentrations: 2.0 mM (normal condition), 0.4 mM (moderate stress), and 0.04 mM (severe stress) for 16 days under hydroponic conditions. Ungrafted watermelon and pumpkin were treated with 2.0 mM and 0.04 mM for 12 days.

Results

The growth of the plants was not affected by 0.4 mM Mg; however, plant growth decreased under 0.04 mM Mg in all graft combinations compared with control (2.0 mM Mg). Pumpkin rootstock grafting significantly increased watermelon growth under low Mg stress (0.04 mM Mg), compared with self-grafted and bottle gourd-grafted plants. The Mg2+ uptake of watermelon plants was increased by grafting onto pumpkin rootstocks, however, root-to-shoot transport capacity of Mg2+ was similar compared with self-grafted plants under 0.04 mM Mg. Gene expression analysis showed that magnesium transporter genes MGT1, MGT3, MGT4, and MGT5 may play an important role in higher Mg2+ uptake of pumpkin root. The photosynthetic parameters and activities of superoxide dismutase, peroxidase and catalase were significantly higher, but malonaldehyde (MDA) content were lower in the pumpkin rootstock grafted plants compared with other graft combinations under 0.04 mM Mg.

Conclusion

Our results provide strong evidence that pumpkin rootstock ‘Jinxinzhen No. 4’ grafting can improve watermelon performance under low Mg stress. The enhanced plant performance is attributed to higher root Mg2+ uptake and the improvement of photosynthesis and antioxidant enzyme activities.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号