首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diversity Within the O-linked Protein Glycosylation Systems of Acinetobacter Species
Authors:Nichollas E Scott  Rachel L Kinsella  Alistair V G Edwards  Martin R Larsen  Sucharita Dutta  Julian Saba  Leonard J Foster  Mario F Feldman
Institution:From the ‡Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; ;§Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada; ;¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5000, Denmark; ;‖Thermo Fisher Scientific, San Jose, California 95134
Abstract:The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.Acinetobacter baumannii is an emerging opportunistic pathogen of increasing significance to health care institutions worldwide (13). The growing number of identified multiple drug resistant (MDR)1 strains (24), the ability of isolates to rapidly acquire resistance (3, 4), and the propensity of this agent to survive harsh environmental conditions (5) account for the increasing number of outbreaks in intensive care, burn, or high dependence health care units since the 1970s (25). The burden on the global health care system of MDR A. baumannii is further exacerbated by standard infection control measures often being insufficient to quell the spread of A. baumannii to high risk individuals and generally failing to remove A. baumannii from health care institutions (5). Because of these concerns, there is an urgent need to identify strategies to control A. baumannii as well as understand the mechanisms that enable its persistence in health care environments.Surface glycans have been identified as key virulence factors related to persistence and virulence within the clinical setting (68). Acinetobacter surface carbohydrates were first identified and studied in A. venetianus strain RAG-1, leading to the identification of a gene locus required for synthesis and export of the surface carbohydrates (9, 10). These carbohydrate synthesis loci are variable yet ubiquitous in A. baumannii (11, 12). Comparison of 12 known capsule structures from A. baumannii with the sequences of their carbohydrate synthesis loci has provided strong evidence that these loci are responsible for capsule synthesis with as many as 77 distinct serotypes identified by molecular serotyping (11). Because of the non-template driven nature of glycan synthesis, the identification and characterization of the glycans themselves are required to confirm the true diversity. This diversity has widespread implications for Acinetobacter biology as the resulting carbohydrate structures are not solely used for capsule biosynthesis but can be incorporated and utilized by other ubiquitous systems, such as O-linked protein glycosylation (13, 14).Although originally thought to be restricted to species such as Campylobacter jejuni (15, 16) and Neisseria meningitidis (17), bacterial protein glycosylation is now recognized as a common phenomenon within numerous pathogens and commensal bacteria (18, 19). Unlike eukaryotic glycosylation where robust and high-throughput technologies now exist to enrich (2022) and characterize both the glycan and peptide component of glycopeptides (2325), the diversity (glycan composition and linkage) within bacterial glycosylation systems makes few technologies broadly applicable to all bacterial glycoproteins. Because of this challenge a deeper understanding of the glycan diversity and substrates of glycosylation has been largely unachievable for the majority of known bacterial glycosylation systems. The recent implementation of selective glycopeptide enrichment methods (26, 27) and the use of multiple fragmentation approaches (28, 29) has facilitated identification of an increasing number of glycosylation substrates independent of prior knowledge of the glycan structure (3033). These developments have facilitated the undertaking of comparative glycosylation studies, revealing glycosylation is widespread in diverse genera and far more diverse then initially thought. For example, Nothaft et al. were able to show N-linked glycosylation was widespread in the Campylobacter genus and that two broad groupings of the N-glycans existed (34).During the initial characterization of A. baumannii O-linked glycosylation the use of selective enrichment of glycopeptides followed by mass spectrometry analysis with multiple fragmentation technologies was found to be an effective means to identify multiple glycosylated substrates in the strain ATCC 17978 (14). Interestingly in this strain, the glycan utilized for protein modification was identical to a single subunit of the capsule (13) and the loss of either protein glycosylation or glycan synthesis lead to decreases in biofilm formation and virulence (13, 14). Because of the diversity in the capsule carbohydrate synthesis loci and the ubiquitous distribution of the PglL O-oligosaccharyltransferase required for protein glycosylation, we hypothesized that the glycan variability might be also extended to O-linked glycosylation. This diversity, although common in surface carbohydrates such as the lipopolysaccharide of numerous Gram-negative pathogens (35), has only recently been observed within bacterial proteins glycosylation system that are typically conserved within species (36) and loosely across genus (34, 37).In this study, we explored the diversity within the O-linked protein glycosylation systems of Acinetobacter species. Our analysis complements the recent in silico studies of A. baumannii showing extensive glycan diversity exists in the carbohydrate synthesis loci (11, 12). Employing global strategies for the analysis of glycosylation, we experimentally demonstrate that the variation in O-glycan structure extends beyond the genetic diversity predicted by the carbohydrate loci alone and targets proteins of similar properties and identity. Using this knowledge, we developed a targeted approach for the detection of protein glycosylation, enabling streamlined analysis of glycosylation within a range of genetic backgrounds. We determined that; O-linked glycosylation is widespread in clinically relevant Acinetobacter species; inter- and intra-strain heterogeneity exist within glycan structures; glycan diversity, although extensive results in the generation of glycans with similar properties and that the utilization of a single glycan for capsule and O-linked glycosylation is a general feature of A. baumannii but may not be a general characteristic of all Acinetobacter species such as A. baylyi.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号