首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bmi1 deficient neural stem cells have increased Integrin dependent adhesion to self-secreted matrix
Authors:Sophia WM Bruggeman  Danielle Hulsman  Maarten van Lohuizen
Institution:The Netherlands Cancer Institute, Division of Molecular Genetics, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
Abstract:

Background

Neural cells deficient for Polycomb group (PcG) protein Bmi1 are impaired in the formation and differentiation of high grade glioma, an incurable cancer of the brain. It was shown that mechanisms involved in cell adhesion and migration were specifically affected in these tumors.

Methods

Using biochemical and cell biological approaches, we investigated the adhesive capacities of Bmi1;Ink4a/Arf deficient primary neural stem cells (NSCs).

Results

Bmi1;Ink4a/Arf deficient NSCs have altered expression of Collagen-related genes, secrete increased amounts of extracellular matrix, and exhibit enhanced cell–matrix binding through the Beta-1 Integrin receptor. These traits are independent from the well described role of Bmi1 as repressor of the Ink4a/Arf tumor suppressor locus.

Conclusion

In addition to proliferative processes, Bmi1 controls the adhesive capacities of primary NSCs by modulating extracellular matrix secretion.

General significance

Since PcG protein Bmi1 is important for both normal development and tumorigenesis, it is vital to understand the complete network in which this protein acts. Whereas it is clear that control of Ink4a/Arf is a major Bmi1 function, there is evidence that other downstream mechanisms exist. Hence, our novel finding that Bmi1 also governs cell adhesion significantly contributes to our understanding of the PcG proteins.
Keywords:Polycomb group  Bmi1  Neural stem cells  Integrins  Adhesion  Brain cancer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号