首页 | 本学科首页   官方微博 | 高级检索  
     


Longitudinal relaxation optimized amide 1H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Authors:Tairan Yuwen  Lewis E. Kay
Affiliation:1.Departments of Molecular Genetics, Biochemistry and Chemistry,University of Toronto,Toronto,Canada;2.Hospital for Sick Children, Program in Molecular Structure and Function,Toronto,Canada
Abstract:Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15N- and 13C-CEST have been the approaches of choice, the development of spin state selective 1H-CEST pulse sequences that separate the effects of chemical and dipolar exchange [T. Yuwen, A. Sekhar and L. E. Kay, Angew Chem Int Ed Engl 2016 doi:  10.1002/anie.201610759 (Yuwen et al. 2017)] significantly increases the utility of 1H-based experiments. Pulse schemes have been described previously for studies of highly deuterated proteins. We present here longitudinal-relaxation optimized amide 1H-CEST experiments for probing chemical exchange in protonated proteins. Applications involving a pair of proteins are presented establishing that accurate 1H chemical shifts of sparsely populated conformers can be obtained from simple analyses of 1H-CEST profiles. A discussion of the inherent differences between 15N-/13C- and 1H-CEST experiments is presented, leading to an optimal strategy for recording 1H-CEST experiments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号