首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oak Seedlings Grown in Different Light Qualities
Authors:LENNART AXELSSON  BIRGITTA KLOCKARE  CHRISTER SUNDQVIST
Institution:Department of Plant Physiology, University of Göteborg, Carl Skoltsbergs Gata 22, S-413 19 Göteborg, Sweden
Abstract:Seedlings of oak (Quercus robur) were germinated in darkness for 3 weeks and then given continuous light or short pulses of light (5–8 min every day). The morphological development was followed during 25 days. In continuous white, blue, and red light the stem growth terminated after about 10 days by formation of a resting bud. At that time the seedlings were about 100 mm high. In con tinuous long wavelength farred light (wavelength longer than 700 nm) the stem growth including leaf formation was continuous without the formation of resting buds, and the stem length was about 270 mm after 25 days. The number of nodes developed became twice that of the seedlings grown in while light. The leaves became well developed in all light colours, but leaf areas were largest in plants cultivated in white light. Compared to dark grown seedlings the mean area per leaf was increased about five times in continuous long wavelength far red light. A supplement with short (5 min) pulses of red light each day increased the leaf area up to 20 times. The stem elongation showed a high energy reaction response, i.e. the stem length increased only in continuous long wavelength far-red light but was not influenced by short pulses of red light or far-red light. The leaf expansion, however, was increased by short pulses of red light with a partial reversion of the effect by a subsequent pulse of far-red light. The fraction of the plant covered with periderm was higher in plants given continuous light. In respect to periderm inhibition continuous long wavelength far red light was the most effective. The transfer of seedlings from darkness to continuous white light gave anthocyanin formation in the stem 10–20 mm below the apex. This formation took place in the cortex and was evident in plants grown in darkness or under short pulses of light. Plants grown in continuous red, blue or long wavelength Far red light showed only traces of anthocyanin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号