首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Probiotic Evaluation of Antimicrobial <Emphasis Type="Italic">Lactobacillus plantarum</Emphasis> VJC38 Isolated from the Crop of Broiler Chicken
Authors:V Nallala  K Jeevaratnam
Institution:1.Department of Biochemistry and Molecular Biology,Pondicherry University,Kalapet, Puducherry,India
Abstract:The aim of this study was to evaluate probiotic properties of antimicrobial Lactobacillus plantarum VJC38 in vitro. L. plantarum VJC38 was isolated from the crop of broiler chicken and characterized using dnaK gene sequence. The inhibitory activities of L. plantarum VJC38 against bacterial and fungal pathogens were evaluated. Antifungal compounds secreted by the strain VJC38 were identified using Gas Chromatography and Mass Spectrometry (GC-MS). The strain was evaluated for its tolerance to low pH, resistance to bile salts, auto-aggregation, co-aggregation with pathogenic Escherichia coli, cell surface hydrophobicity, cholesterol lowering activity, β-galactosidase production, adhesion ability to Caco-2 cells, mucin degradation, hemolytic activity and biogenic amine production. Phylogenetic analysis of dnaK gene of bacterial strain VJC38 showed 99% sequence similarity to Lactobacillus plantarum var. plantarum. It showed effective inhibition against food spoiling and pathogenic organisms like Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Aspergillus niger, Penicillium expansum and Eurotium species. The antifungal compound phenol- 2,4-bis(1,1-dimethylethyl) (PD) was identified in the culture filtrate of L. plantarum VJC38 and reported to have inhibition against Aspergillus species. L. plantarum VJC38 exhibited tolerance to low pH, resistance to bile salts, bile salt hydrolase activity, auto-aggregation (87.5%), co-aggregation with Escherichia coli (55.7%), cholesterol lowering activity (64%), β-galactosidase production (1206 MU), adherence to Caco-2 cells (11%), negative for mucin degradation, hemolytic activity and biogenic amine production. L. plantarum VJC38 could be a good candidate for further investigation in vivo to elucidate its health benefits and to evaluate its technological properties as a bio-protective strain.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号