首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutations in CSPP1 Cause Primary Cilia Abnormalities and Joubert Syndrome with or without Jeune Asphyxiating Thoracic Dystrophy
Authors:Karina Tuz  Ruxandra Bachmann-Gagescu  Diana?R O’Day  Kiet Hua  Christine?R Isabella  Ian?G Phelps  Allan?E Stolarski  Brian?J O’Roak  Jennifer?C Dempsey  Charles Lourenco  Abdulrahman Alswaid  Carsten?G B?nnemann  Livija Medne  Sheela Nampoothiri  Zornitza Stark  Richard?J Leventer  Meral Top?u  Ali Cansu  Sujatha Jagadeesh  Stephen Done  Gisele?E Ishak  Ian?A Glass  Jay Shendure  Stephan?CF Neuhauss  Chad?R Haldeman-Englert  Dan Doherty  Russell?J Ferland
Abstract:Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ~5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号