首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Climate refugia and migration requirements in complex landscapes
Authors:David R Roberts  Andreas Hamann
Institution:1. Dept of Renewable Resources, Univ. of Alberta, Edmonton, Canada;2. Dept of Biometry and Environmental System Analysis, Univ. of Freiburg, Freiburg, Germany
Abstract:All of today's species have proven their ability to cope with climate change during the glacial‐interglacial cycles of the Quaternary, but future migration requirements may be different regarding speed, direction, geographic barriers, and availability of nearby climate refugia. Here, we contribute a landscape‐level climatic analysis of postglacial vs. projected future migration requirements for 24 common western North American tree species. Using a recently developed velocity of climate change algorithm, we quantify required migration velocities for all populations of species to track climate habitat, based on projections from general circulation models for the 2080s and the last glacial maximum, 21 000 yr ago. Specifically, we ask if nearby climate refugia exist for at least some populations within species ranges and whether the current landscape position of species imply qualitatively different migration requirements in the future compared to those during glacial‐interglacial cycles. Results showed that velocities to reach the nearest climate refugia in the future still exceed the fastest reconstructed post‐glacial migration requirements, but not by orders of magnitude. Regarding landscape positions, we find a low correlation among past and future migration requirements (r = 0.38), suggesting that qualitatively different migration patterns may emerge in the future for some species. Species identified as occupying landscape positions requiring disproportionally faster migration requirements in the future include whitebark pine, pinyon pine, and coast redwood. We discuss uncertainties of our analytical approach as well as implications for human‐assisted migration and conservation action to address climate change.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号