首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Ca2+ ions on the adhesion and mechanical properties of adsorbed layers of human osteopontin
Authors:Zappone Bruno  Thurner Philipp J  Adams Jonathan  Fantner Georg E  Hansma Paul K
Institution:* Liquid Crystal Laboratory, Regional Laboratory and Center of Excellence for Functional Nanostructured Materials, Centro Nazionale delle Ricerche and Istituto Nazionale per la Fisica della Materia, Arcavacata di Rende (CS) 87036, Italy
Bioengineering Science Research Group, University of Southampton, Southampton, United Kingdom
Department of Physics, University of California, Santa Barbara, California
§ Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract:Using an atomic force microscope and a surface force apparatus, we measured the surface coverage, adhesion, and mechanical properties of layers of osteopontin (OPN), a phosphoprotein of the human bones, adsorbed on mica. OPN is believed to connect mineralized collagen fibrils of the bone in a matrix that dissipates energy, reducing the risk of fractures. Atomic force microscopy normal force measurements showed large adhesion and energy dissipation upon retraction of the tip, which were due to the breaking of the many OPN-OPN and OPN-mica bonds formed during tip-sample contact. The dissipated energy increased in the presence of Ca2+ ions due to the formation of additional OPN-OPN and OPN-mica salt bridges between negative charges. The forces measured by surface force apparatus between two macroscopic mica surfaces were mainly repulsive and became hysteretic only in the presence of Ca2+: adsorbed layers underwent an irreversible compaction during compression due to the formation of long-lived calcium salt bridges. This provides an energy storage mechanism, which is complementary to energy dissipation and may be equally relevant to bone recovery after yield. The prevalence of one mechanism or the other appears to depend on the confinement geometry, adsorption protocol, and loading-unloading rates.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号