首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of Oscillatory Contraction in Insect Flight Muscle by Troponin
Authors:Uroš Kr?i?  Kevin R Leonard  Belinda Bullard
Institution:1 EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
2 Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University, D-44780 Bochum, Germany
3 Department of Biology, University of York, York YO10 5DD, UK
Abstract:Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca2+. Indirect flight muscle has two TnC isoforms: F1 binding a single Ca2+ in the C-domain, and F2 binding Ca2+ in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca2+. We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca2+ concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca2+ was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The Kd was 1.01 μM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle.
Keywords:IFM  indirect flight muscle  TnC  Ca2+-binding subunit of troponin  F1 and F2  TnC isoforms  TnI  inhibitory subunit  TnH  Lethocerus TnI homologue  TnT  tropomyosin-binding subunit of troponin  ITC  isothermal titration calorimetry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号