首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neuroprotective Effects of PEP-1-Cu,Zn-SOD against Ischemic Neuronal Damage in the Rabbit Spinal Cord
Authors:Woosuk Kim  Dae Won Kim  Dae Young Yoo  Jin Young Chung  In Koo Hwang  Moo-Ho Won  Soo Young Choi  Sei Woong Jeon  Je Hoon Jeong  Hyung Sik Hwang  Seung Myung Moon
Institution:Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
Abstract:A rabbit model of spinal cord ischemia has been introduced as a good model to investigate the pathophysiology of ischemia-reperfusion (I-R)-induced paraplegia. In the present study, we observed the effects of Cu,Zn-superoxide dismutase (SOD1) against ischemic damage in the ventral horn of L(5-6) levels in the rabbit spinal cord. For this study, the expression vector PEP-1 was constructed, and this vector was fused with SOD1 to create a PEP-1-SOD1 fusion protein that easily penetrated the blood-brain barrier. Spinal cord ischemia was induced by transient occlusion of the abdominal aorta for 15 min. PEP-1-SOD1 (0.5 mg/kg) was intraperitoneally administered to rabbits 30 min before ischemic surgery. The administration of PEP-1-SOD1 significantly improved neurological scores compared to those in the PEP-1 (vehicle)-treated ischemia group. Also, in this group, the number of cresyl violet-positive cells at 72 h after I-R was much higher than that in the vehicle-treated ischemia group. Malondialdehyde levels were significantly decreased in the ischemic spinal cord of the PEP-1-SOD1-treated ischemia group compared to those in the vehicle-treated ischemia group. In contrast, the administration of PEP-1-SOD1 significantly ameliorated the ischemia-induced reduction of SOD and catalase levels in the ischemic spinal cord. These results suggest that PEP-1-SOD1 protects neurons from spinal ischemic damage by decreasing lipid peroxidation and maintaining SOD and catalase levels in the ischemic rabbit spinal cord.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号