Expression of nitrous oxide reductase from Pseudomonas stutzeri in transgenic tobacco roots using the root-specific rolD promoter from Agrobacterium rhizogenes |
| |
Authors: | Wan Shen Johnson Amanda M Altosaar Illimar |
| |
Affiliation: | Department of Biochemistry, Microbiology and Immunology, Center for Research on Environmental Microbiology - CREM, Faculty of Medicine, University of Ottawa 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. |
| |
Abstract: | The nitrous oxide (N(2)O) reduction pathway from a soil bacterium, Pseudomonas stutzeri, was engineered in plants to reduce N(2)O emissions. As a proof of principle, transgenic plants expressing nitrous oxide reductase (N(2)OR) from P. stutzeri, encoded by the nosZ gene, and other transgenic plants expressing N(2)OR along with the more complete operon from P. stutzeri, encoded by nosFLZDY, were generated. Gene constructs were engineered under the control of a root-specific promoter and with a secretion signal peptide. Expression and rhizosecretion of the transgene protein were achieved, and N(2)OR from transgenic Nicotiana tabacum proved functional using the methyl viologen assay. Transgenic plant line 1.10 showed the highest specific activity of 16.7 μmol N(2)O reduced min(-1) g(-1) root protein. Another event, plant line 1.9, also demonstrated high specific activity of N(2)OR, 13.2 μmol N(2)O reduced min(-1) g(-1) root protein. The availability now of these transgenic seed stocks may enable canopy studies in field test plots to monitor whole rhizosphere N flux. By incorporating one bacterial gene into genetically modified organism (GMO) crops (e.g., cotton, corn, and soybean) in this way, it may be possible to reduce the atmospheric concentration of N(2)O that has continued to increase linearly (about 0.26% year(-1)) over the past half-century. |
| |
Keywords: | Greenhouse gas nitrous oxide nitrous oxide reductase phytoremediation rhizosecretion root‐specific expression |
本文献已被 PubMed 等数据库收录! |
|